Camps, F. & Coll, J. (1993). Phytochemistry. 32, 1361-1370.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lin, Y. L., Kuo, Y. H. & Chen, Y. L. (1989). Chem. Pharm. Bull. 37, 2191-2193.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-353.

Acta Cryst. (1996). C52, 2231-2236

Substituted Imidazonaphthyridine Derivatives. I. $C_{19}H_{14}F_3N_3$, $C_{18}H_{10}F_5N_3$, $C_{18}H_{11}ClF_3N_3$ and $C_{18}H_{11}BrF_3N_3$

HOONG-KUN FUN,^{*a*} KANDASAMY SIVAKUMAR,^{*a*} SWEE-ONG CHUA,^{*b*} MUN-FOO OOI,^{*b*} MASSUD ALLAG S. ANWAIR,^{*b*} EE-KIANG GAN^{*b*} AND WILLIAM ROY JACKSON^{*c*}

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Chemistry, Monash University, Clayton, Victoria 3168, Australia. E-mail: hkfun@usm.my

(Received 5 December 1995; accepted 14 March 1996)

Abstract

The structures of four 2,6,8-trisubstituted imidazonaphthyridine derivatives, 6-methyl-2-(4-methylphenyl)-8-trifluoromethylimidazo[1,2-*a*][1,8]naphthyridine, (I), 2-(3,4-difluorophenyl)-6-methyl-8-trifluoromethylimidazo-[1,2-*a*][1,8]naphthyridine, (II), 2-(4-chlorophenyl)-6methyl-8-trifluoromethylimidazo[1,2-*a*][1,8]naphthyridine, (III), and 2-(4-bromophenyl)-6-methyl-8-trifluoromethylimidazo[1,2-*a*][1,8]naphthyridine, (IV), are reported. The molecules are planar and exist as dimers, formed through intermolecular C—H···N hydrogen bonds in all four cases. The trifluoromethyl group undergoes rotational disorder in (II)–(IV). The molecules are laid in two-dimensional planes in the crystal lattice with possible intermoleculear π – π interactions.

Comment

Imidazo[1,2-a]pyridine derivatives have been found to have potential biological activities and photophysical properties (Kaminski et al., 1989; Knolker & Boese, 1988). Recently, imidazo[1,2-a]1,8-naphthyridine derivatives were reported to possess potential antibacterial activity (Kondo, Taguchi, Inoue, Sakamoto & Tsukamoto, 1990). This prompted us to synthesize a series of imidazonaphthyridine compounds, characterize them, and study their biological and photophysical properties. Like their pyridine analogues, these compounds also show fluorescence in the visible region. We have obtained the compounds via facile condensation of 2-amino-1,8-naphthyridine with appropriate 1,3-dicarbonyl compounds (Chua & Jackson, 1995; Anwair, 1995). Although 1- and 2-substituted isomers are possible, only the 2-substituted isomer has been isolated consistently. We have determined the crystal structures and hereby report the structures of four of them. We believe that this is the first report on the crystal structures of imidazonaphthyridines. Compounds (III) and (IV) are isomorphous.

All four structures confirm the double bonds N1=C1, C2=C3 and C9=C10 and the other bond lengths and angles are normal. The imidazonaphthyridine moiety is planar in each case, with maximum deviations of 0.044 (2) (C5), 0.036 (5) (C5), 0.024 (2) (C5) and 0.023 (6) Å (C6), and dihedral angles between the planes of the imidazonaphthyridine moiety and the phenyl ring of 6.6 (1), 1.5 (1), 6.9 (1) and 7.8 (1)° in (I), (II) and (IV), respectively. Hence each molecule is almost planar.

All four compounds crystallize in the triclinic space group $P\overline{1}$ and form dimeric pairs through intermolecular C2—H2…N1 hydrogen bonds around the inversion centres. The C2…N1 distance is found to increase with heavier halogen substitution at C14 (in the order F, Cl, Br). The halogen atoms in (II), (III) and (IV) have interactions with the F atoms of the trifluoromethyl group

[†] On leave from: Department of Physics, Anna University, Madras-600 025, India.

Fig. 1. Views of (a) (I), (b) (II), (c) (III) and (d) (IV) showing numbering schemes; displacement ellipsoids are drawn at the 50% probability level. For clarity, the CF₃ disorder in (II)–(IV) is not shown.

(d)

and this may be the reason for the rotational disorder observed in this group in these compounds. Notably short intermolecular contacts observed are: in (II) $F4 \cdots F2^{i}$ 2.863 (5), $F4 \cdots F2^{i}$ 2.88 (3), $F5 \cdots F3^{ii}$ 3.022 (6) Å; in (III) $C1 \cdots F2^{iii}$ 3.05 (1); in (IV) $Br \cdots F1^{iiv}$ 3.01 (1) Å [symmetry codes: (i) 1 + x, y, z-1; (ii) 1-x, 1-y, 1-z; (iii) x-1, y, z-1; (iv) x-1, y-1, z+1]. Other intermolecular hydrogen bonds are given in Table 3.

In all four cases the molecules form two-dimensional layers in the solid state and these layers are found parallel to the (121), (212), (212) and (213) planes in (I), (II), (III) and (IV), respectively. The planarity of these molecules, the interlayer distances of 3.426 (I), 3.429 (II), 3.414 (III) and 3.444 Å (IV), and their packing modes suggest that intermolecular π - π interactions may also play a role in the crystal packing (see Fig. 2). Such π - π interactions were also observed in the imidazo-pyridine derivatives (Knolker, Boese & Hitzemann, 1990).

Fig. 2. Packing of the molecules in (II) viewed down the *a* axis. $C \rightarrow H \cdots N$ hydrogen bonds and $F \cdots F$ short contacts are shown as dashed lines.

Experimental

Single crystals of (I), (II), (III) and (IV) were obtained from slow evaporation of ethanol solution, ethyl acetate solution, ethanol/ethyl acetate solution, and ethanol solution, respectively.

Compound (I)

 D_m not measured

Crystal data $C_{19}H_{14}F_{3}N_{3}$ $M_{r} = 341.33$ Triclinic $P\overline{1}$ a = 9.092 (1) Å b = 9.849 (1) Å c = 10.428 (1) Å $\alpha = 68.90 (1)^{\circ}$ $\beta = 69.39 (1)^{\circ}$ $\gamma = 72.67 (1)^{\circ}$ $V = 799.62 (14) Å^{3}$ Z = 2 $D_{x} = 1.418 \text{ Mg m}^{-3}$

 $\lambda = 0.71073 \text{ Å}$ Cell parameters from 36 reflections $\theta = 10-25^{\circ}$ $\mu = 0.110 \text{ mm}^{-1}$ T = 293 (2) KThick plate $0.58 \times 0.48 \times 0.22 \text{ mm}$

Mo $K\alpha$ radiation

Yellow

Siemens P4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3324 measured reflections 2760 independent reflections 1981 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0123$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0457$ $wR(F^2) = 0.1446$ S = 1.0452760 reflections 283 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0922P)^2 + 0.0191P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Compound (II)

Crystal data C₁₈H₁₀F₅N₃ $M_r = 363.29$ Triclinic $P\overline{1}$ a = 7.916 (7) Å b = 8.454 (6) Å c = 12.838 (9) Å $\alpha = 73.64$ (2)° $\beta = 87.62$ (6)° $\gamma = 70.08$ (7)° V = 773.6 (10) Å³ Z = 2 $D_x = 1.560$ Mg m⁻³ D_m not measured

Data collection Siemens P4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3308 measured reflections 2706 independent reflections 1949 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0247$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.1027$ $wR(F^2) = 0.3248$ S = 1.077 $\theta_{\text{max}} = 24.99^{\circ}$ $h = -1 \rightarrow 10$ $k = -10 \rightarrow 11$ $l = -11 \rightarrow 12$ 3 standard reflections monitored every 97 reflections intensity decay: <2%

 $\begin{aligned} \Delta \rho_{max} &= 0.33 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} &= -0.24 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction:} \\ SHELXL93 \text{ (Sheldrick, 1993)} \\ \text{Extinction coefficient:} \\ 0.011 \text{ (4)} \\ \text{Atomic scattering factors} \\ \text{from International Tables} \\ \text{for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)} \end{aligned}$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 8-25^{\circ}$ $\mu = 0.137$ mm⁻¹ T = 293 (2) K Plate $0.66 \times 0.52 \times 0.14$ mm Light brown

 $\theta_{max} = 25.00^{\circ}$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 1$ $l = -15 \rightarrow 15$ 3 standard reflections monitored every 97 reflections intensity decay: <3%

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.59 \text{ e} \text{ Å}^{-3}$ Extinction correction: none 2706 reflections 282 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.2583P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Compound (III) Crystal data

C₁₈H₁₁ClF₃N₃ $M_r = 361.75$ Triclinic $P\overline{1}$ a = 8.422 (2) Å b = 9.042 (1) Å c = 12.859 (3) Å $\alpha = 70.43$ (2)° $\beta = 89.09$ (2)° $\gamma = 62.25$ (1)° V = 804.9 (3) Å³ Z = 2 $D_x = 1.493$ Mg m⁻³ D_m not measured

Data collection

Siemens P4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3352 measured reflections 2742 independent reflections 2084 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0242$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0416$ $wR(F^2) = 0.1191$ S = 1.0192742 reflections 297 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0781P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Compound (IV)

Crystal data $C_{18}H_{11}BrF_{3}N_{3}$ $M_{r} = 406.21$ Triclinic $P\overline{1}$ a = 8.557 (1) Å b = 8.954 (1) Å c = 12.957 (1) Å $\alpha = 70.12 (1)^{\circ}$ $\beta = 72.27 (1)^{\circ}$ $\gamma = 63.19 (1)^{\circ}$ $V = 819.62 (15) Å^{3}$ Z = 2 $D_{x} = 1.646 Mg m^{-3}$ D_{m} not measured Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 35 reflections $\theta = 9-25^{\circ}$ $\mu = 0.275$ mm⁻¹ T = 293 (2) K Needle $0.60 \times 0.32 \times 0.24$ mm Yellow

 $\theta_{max} = 25.00^{\circ}$ $h = -1 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -15 \rightarrow 15$ 3 standard reflections monitored every 97 reflections intensity decay: <4%

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 39 reflections $\theta = 8-25^{\circ}$ $\mu = 2.544$ mm⁻¹ T = 293 (2) K Needle $0.62 \times 0.32 \times 0.16$ mm Yellow

Data collection					C6	-0.0467 (6)	0.5035 (6)	0.8081 (3)	0.0528 (10)
Siemens	Siemens P4 diffractometer $R_{int} = 0.0318$			C7	-0.0384(5) 0.1403(5)	0.6423(5) 0.4583(5)	0.7206(3) 0.6323(3)	0.0405 (9)	
$\theta/2\theta$ scar	ns		$\theta_{\rm max} = 27.50^{\circ}$		C9	0.2649 (5)	0.5593 (5)	0.4529 (3)	0.0429 (9)
Absorpti	on correction:		$h = -1 \rightarrow 11$		C10	0.3742 (5)	0.4666 (5)	0.3903 (3)	0.0421 (9)
emniri	ical ψ scans		$k = -10 \rightarrow 11$		C11	0.4401 (5)	0.5348 (5)	0.2847 (3)	0.0450 (9)
(XSCA	NS° Siemens	1994)	$l = -16 \rightarrow 16$		C12	0.4006 (6)	0.7134 (6)	0.2372 (3)	0.0550 (11)
$T \cdot -$	0.576 T	_	3 standard reflec	tions	C13	0.4588 (7)	0.7787(7)	0.1375 (4)	0.0690(13)
$1_{min} - 0.040$. 0.570, 1 max	-	monitored ave	07	CIS	0.5048 (7)	0.4855(7)	0.1308(4)	0.0616(12)
0.949	anned reflecti		reflections	1 y 97	C16	0.5483 (6)	0.4192 (6)	0.2300 (3)	0.0550 (11)
4452 me			intersity door	~ 207	C17	0.0383 (7)	0.1800 (6)	0.9001 (4)	0.0624 (12)
3092 ind	iependent refie	cuons	intensity deca	y: < 3%	C18	-0.1319 (4)	0.8279 (5)	0.7226 (2)	0.0648 (13)
2183 06	served reflection	ons			FI	-0.1809(6)	0.9408 (4)	0.6259 (3)	0.1007(15)
[I > 2]	$2\sigma(I)$				г2 F3	-0.2800(3) -0.0321(7)	0.8317 (3)	0.7081(4) 0.7744(6)	0.0949(14) 0.143(3)
					F1'	-0.2914(17)	0.927 (3)	0.675 (2)	0.1007 (15)
					F2'	-0.154 (5)	0.844 (4)	0.8215 (8)	0.0949 (14)
Refineme	ent				F3'	-0.030 (4)	0.925 (4)	0.692 (3)	0.143 (3)
Pefinem	ent on F^2		$(\Delta/\sigma) = 0.00$	1	F4	0.6269 (5)	0.7200 (5)	-0.0131(2)	0.0981 (12)
$\mathbf{D}[\mathbf{F}^2 \setminus \mathbf{A}]$	$2\pi (F^2) = 0.04$	573	$\Delta_{0} = 0.64 \text{e}$	Å -3	F3	0.7127 (5)	0.3779 (5)	0.0761 (3)	0.0998 (12)
$K[\Gamma > L$ $\dots D(\Gamma^2)$	20(r) = 0.0.	023	$\Delta \rho_{\rm max} = 0.04 \ {\rm e}$	λ^{-3}	(III)				
$WK(F^{-}) =$	= 0.1444		$\Delta \rho_{\rm min} = -0.55$	e A	Cl	-0.34166 (8)	0.75144 (8)	-0.01306 (5)	0.0685 (2)
S = 0.92	7		Extinction corre	ction: none	NI	0.3238 (2)	0.2834 (2)	0.44463 (13)	0.0487 (4)
3692 ref	lections		Atomic scatterin	g factors	N2	0.3258 (2)	0.6042 (2)	0.64892 (13)	0.0471 (4)
277 para	meters		from Internati	onal Tables	N3	0.3433 (2)	0.4250 (2)	0.55210 (12)	0.0400 (4)
All H-at	om parameters	5	for Crystallog	raphy (1992,		0.4172(3) 0.5747(3)	0.2655(2)	0.5328 (2)	0.0452(4)
refined	d j		Vol. C, Tables	4.2.6.8 and	C_2	0.5747(3) 0.6459(3)	0.1152(3) 0.1254(3)	0.6085(2) 0.6955(2)	0.0530(5) 0.0531(5)
$w = 1/[\sigma$	$r^2(F_o^2) + (0.08)$	$(41P)^2$	6.1.1.4)		C4	0.5673 (3)	0.2906 (3)	0.7163 (2)	0.0443 (4)
where	$P = (F_o^2 + 2)$	$F_{c}^{2})/3$			C5	0.6329 (3)	0.3123 (3)	0.8071 (2)	0.0476 (5)
					C6	0.5431 (3)	0.4795 (3)	0.8152 (2)	0.0544 (5)
					C7	0.3934 (3)	0.6185 (3)	0.7355 (2)	0.0525 (5)
					C8	0.4138(2)	0.4424(2)	0.64193 (15)	0.0400(4)
Table 1	Fractional	atomic	coordinates and	l equivalent	C10	0.1944(3) 0.1847(3)	0.3485(3) 0.4595(2)	0.40980 (13)	0.0421(4)
14010 1	·····	1	coordinates and		CII	0.0528 (2)	0.5299 (2)	0.30425 (15)	0.0414 (4)
	isotropic ais	пасете	ent parameters (A ²)	C12	-0.0981 (3)	0.7025 (3)	0.2691 (2)	0.0484 (5)
	11	$(1/3)\Sigma$			C13	-0.2195 (3)	0.7707 (3)	0.1729 (2)	0.0522 (5)
	Ueq -	(1)3)242	$\Delta_j O_{ij} u_i u_j \mathbf{a}_i \cdot \mathbf{a}_j$		C14	-0.1907 (3)	0.6656 (3)	0.1099 (2)	0.0481 (5)
_	x .	У	z	$U_{ m eq}$	C15	-0.0451(3)	0.4939(3)	0.1433 (2)	0.0552(5)
(I)					C10 C17	0.0739(3) 0.7943(4)	0.4276(3) 0.1504(4)	0.2392(2)	0.0318(3)
N1	0.2779 (2)	1.0662 ((2) 0.9372 (2)	0.0543 (5)	C18	0.2926 (4)	0.8016(4)	0.7428(2)	0.0736(7)
NZ N2	0.2702(2)	0.9060 ((2) 0.5837 $(2)(2)$ 0.7651 (2)	0.0517(4)	Fl	0.1358 (11)	0.9039 (11)	0.6855 (11)	0.153 (4)
Cl	0.2603(2) 0.3670(3)	0.9782 ((2) 0.7051(2) (2) $0.8579(2)$	0.0403(4)	F2	0.2582 (17)	0.7788 (9)	0.8514 (5)	0.142 (3)
C2	0.5230 (3)	0.8911 (2) 0.8528 (2)	0.0595 (6)	F3	0.3907 (13)	0.8735 (13)	0.7368 (11)	0.151 (5)
C3	0.5944 (3)	0.8118 (2) 0.7586 (2)	0.0584 (5)	Fl'	0.1482 (12)	0.8385 (9)	0.7786 (12)	0.133 (2)
C4	0.5153 (2)	0.8123 (2) 0.6606 (2)	0.0498 (5)	F2 F3'	0.3879 (12)	0.8421 (10)	0.7903 (9)	0.141(3) 0.105(2)
C5	0.5853 (3)	0.7353 ((2) 0.5564 (2)	0.0562 (5)	15	0.2408 (12)	0.7548 (5)	0.0509 (4)	0.105 (2)
\mathcal{C}	0.4936 (3)	0.7453 ((2) 0.4707(2) (2) 0.4887(2)	0.0610 (6)	(IV)				
C8	0.3590(2)	0.8962 ((2) 0.4887(2) (2) 0.6659(2)	0.0334(5)	Br	0.15267 (6)	0.23386 (6)	0.51849 (4)	0.0632 (2)
C9	0.1426 (2)	1.0696 ((2) 0.7910 (2)	0.0490 (5)	N1	0.8271 (5)	0.2285 (4)	0.0548 (3)	0.0477 (9)
C10	0.1373 (2)	1.1246 ((2) 0.8967 (2)	0.0484 (5)	N2	0.8231 (5)	0.7532 (4)	-0.1474 (3)	0.0464 (8)
C11	0.0100 (2)	1.2301 (2) 0.9631 (2)	0.0498 (5)	N3	0.8444 (4)	0.4778 (4)	-0.0520 (2)	0.0395 (7)
C12	-0.1263(3)	1.3027 ($\begin{array}{ccc} (3) & 0.9151 & (3) \\ (2) & 0.0780 & (2) \\ \end{array}$	0.0646 (6)	CI	0.9193 (6)	0.3001 (5)	-0.0329(3)	0.0462 (10)
C13	-0.2425(3) -0.2314(3)	1.4020 ((3) 0.9780(3) (2) 1.0919(2)	0.0094 (0)	C2 C3	1.0780 (0)	0.2233(0) 0.3219(5)	-0.1007(4) -0.1926(4)	0.0343(12) 0.0501(11)
C15	-0.0972(3)	1.3630 ((2) 1.1404 (2)	0.0627 (6)	C4	1.0688 (5)	0.5078 (5)	-0.2130(3)	0.0439 (9)
C16	0.0204 (3)	1.2621 ((2) 1.0782 (2)	0.0576 (5)	C5	1.1330 (6)	0.6192 (5)	-0.3026 (3)	0.0461 (10)
C17	0.7519 (4)	0.6446 ((4) 0.5398 (3)	0.0764 (7)	C6	1.0389 (6)	0.7961 (6)	-0.3112 (4)	0.0544 (11)
C18	0.2345 (3)	0.8319 (3) 0.4049 (3)	0.0710 (7)	C7	0.8903 (6)	0.8542 (5)	-0.2333 (4)	0.0536 (11)
C19	-0.3580 (4)	1.5474 ((3) 1.1594 (3)	0.0803 (8)	C8	0.9129 (5)	0.5847 (5)	-0.1398(3)	0.0393(9)
F1 F2	0.1459(2) 0.3170(2)	0.9039 ((2) 0.3628 $(2)(2)$ 0.2863 (2)	0.0990 (0)	C10	0.0931(3)	0.5192(5) 0.3642(5)	0.0283(3) 0.0934(3)	0.0421(9) 0.0424(9)
F3	0.1331(3)	0.7415 ((2) 0.2803(2) (2) 0.4791(2)	0.1213(7) 0.1314(8)	CII	0.5549 (5)	0.3326(5)	0.1924 (3)	0.0408 (9)
	0.1551 (5)	0.7 110 (2) 0, (2)	0.1511 (0)	C12	0.4037 (6)	0.4674 (5)	0.2268 (3)	0.0484 (10)
(III)					C13	0.2847 (6)	0.4400 (6)	0.3218 (4)	0.0494 (11)
()				0.0475 (8)	C14	0.3146 (5)	0.2751 (5)	0.3851 (3)	0.0476 (10)
NI	0.4158 (4)	0.2890 ((4) 0.4375 (3)	0.0475 (0)	<u></u>	0.4400	0.1000.000	0.0501 (0)	0.0500
N1 N2	0.4158 (4) 0.0546 (4)	0.2890 ($\begin{array}{ccc} (4) & 0.4375 & (3) \\ (4) & 0.6342 & (2) \\ (4) & 0.5422 & (2) \\ \end{array}$	0.0476 (8)	C15	0.4621 (6)	0.1373 (6)	0.3531 (3)	0.0528 (11)
N1 N2 N3	0.4158 (4) 0.0546 (4) 0.2386 (4) 0.3347 (5)	0.2890 (0.6224 (0.4359 (0.2725 ($\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0475 (8) 0.0476 (8) 0.0428 (8) 0.0456 (9)	C15 C16 C17	0.4621 (6) 0.5804 (7) 1.2938 (7)	0.1373 (6) 0.1686 (6) 0.5547 (8)	0.3531 (3) 0.2579 (4) -0.3880 (4)	0.0528 (11) 0.0517 (12) 0.0639 (13)
N1 N2 N3 C1 C2	0.4158 (4) 0.0546 (4) 0.2386 (4) 0.3347 (5) 0.3297 (6)	0.2890 (0.6224 (0.4359 (0.2725 (0.1207 (0.0475 (8) 0.0476 (8) 0.0428 (8) 0.0456 (9) 0.0547 (11)	C15 C16 C17 C18	0.4621 (6) 0.5804 (7) 1.2938 (7) 0.7891 (5)	0.1373 (6) 0.1686 (6) 0.5547 (8) 1.0417 (6)	$\begin{array}{c} 0.3531 (3) \\ 0.2579 (4) \\ -0.3880 (4) \\ -0.2403 (3) \end{array}$	0.0528 (11) 0.0517 (12) 0.0639 (13) 0.075 (2)
N1 N2 N3 C1 C2 C3	0.4158 (4) 0.0546 (4) 0.2386 (4) 0.3347 (5) 0.3297 (6) 0.2385 (6)	0.2890 (0.6224 (0.4359 (0.2725 (0.1207 (0.1356 ($\begin{array}{cccc} (4) & 0.4375 & (3) \\ (4) & 0.6342 & (2) \\ (4) & 0.5432 & (2) \\ (5) & 0.5285 & (3) \\ (5) & 0.6106 & (3) \\ (5) & 0.6994 & (3) \end{array}$	0.0476 (8) 0.0428 (8) 0.0456 (9) 0.0547 (11) 0.0518 (10)	C15 C16 C17 C18 F1	0.4621 (6) 0.5804 (7) 1.2938 (7) 0.7891 (5) 0.7627 (16)	0.1373 (6) 0.1686 (6) 0.5547 (8) 1.0417 (6) 1.0698 (12)	$\begin{array}{c} 0.3531 (3) \\ 0.2579 (4) \\ -0.3880 (4) \\ -0.2403 (3) \\ -0.1381 (5) \end{array}$	0.0528 (11) 0.0517 (12) 0.0639 (13) 0.075 (2) 0.0890 (12)
N1 N2 N3 C1 C2 C3 C4	0.4158 (4) 0.0546 (4) 0.2386 (4) 0.3347 (5) 0.3297 (6) 0.2385 (6) 0.1398 (5)	0.2890 (0.6224 (0.4359 (0.2725 (0.1207 (0.1356 (0.3057 (0.0475 (8) 0.0476 (8) 0.0428 (8) 0.0547 (11) 0.0518 (10) 0.0440 (9)	C15 C16 C17 C18 F1 F1'	0.4621 (6) 0.5804 (7) 1.2938 (7) 0.7891 (5) 0.7627 (16) 0.6171 (8)	0.1373 (6) 0.1686 (6) 0.5547 (8) 1.0417 (6) 1.0698 (12) 1.1062 (11)	0.3531 (3) 0.2579 (4) -0.3880 (4) -0.2403 (3) -0.1381 (5) -0.2542 (11)	0.0528 (11) 0.0517 (12) 0.0639 (13) 0.075 (2) 0.0890 (12) 0.0890 (12)

F2 F2'	0.6701 0.7076	(15) (15)	1.0878 (12 1.1257 (12	2) 2)	-0.1478 (0 -0.3310 (*	6) 7)	0.0890 0.0890	(12) (12)	C12- C3-
F2″	0.9181	(12)	1.1026 (14	4)	-0.2598 (11)	0.0890	(12)	C17-
F3	0.6148	(8)	1.0854 (12	2)	-0.1902 (11)	0.0890	(12)	C17-
F3'	0.7859	(15)	1.1275 (12	2)	-0.3496 (3	5)	0.0890	(12)	C17-
F3″	0.8763	(14)	1.1216 (14	4)	-0.2205 (11)	0.0890	(12)	(III) C2—
Table 2. S	Select	ed geo	metric pa	ıram	eters (Å	, °) fa	or (I)-(J	IV)	C12- C13-
			.=						(IV)
		(I)	(I)	I)	(III)	()	(IV))	C2-
NI-CI		1.311 (3	3) 1.306	5 (5)	1.311	(2)	1.319	(5)	C3-
NI-CIU		1.382 (.	3) 1.3/8	s (5)	1.381	(2)	1.379	(5)	C12-
N2-C7		1.331 (.	5) 1.324	+ (5)	1.329	(2)	1.335	(5)	C13-
N2-C8		1.333 (2) 1.328	5 (5) 2 (5)	1.332	(2)	1.332	(5)	C12-
N3 C8		1.397 (2) 1.392	7 (5)	1.300	(2)	1.363	(J) (5)	0
N3_C0		1.392 (2	2) 1.377	(J) (J)	1.394	(2)	1.303	(5)	Sym
C1 - C2		1.300 (.	3) 1.300	1 (6)	1 / 30	(2)	1.301	(5)	(iii)
$C_{1} = C_{2}$		1341 ($\frac{1}{3}$ $\frac{1}{3}$	7 (6)	1 338	(3)	1 334	(6)	(vii)
$C_{2} = C_{3}$		1 440 (3) 1.557	(0)	1.550	(3)	1.354	(6)	(x) l
C4-C5		1.407 (3) 1.397	7 (5)	1.4408	(3)	1 401	(5)	
C4-C8		1.408 (3) 1422	(5)	1.406	(3)	1 413	(5)	The
C5-C6		1.383 (3) 1.393	3 (6)	1.381	(3)	1.398	(6)	diso
C5-C17		1.498 (3) 1.502	2 (6)	1.506	(3)	1.497	(6)	two
C6—C7		1.378 (3) 1.395	5 (6)	1.387	(3)	1.373	(6)	100
C7-C18		1.499 (3) 1.497	7 (6)	1.505	(3)	1.487	(6)	or 8
C9-C10		1.374 (3) 1.358	3 (5)	1.365	(3)	1.373	(5)	(IV)
C10C11		1.461 (3	3) 1.466	5 (5)	1.464	(3)	1.468	(5)	aton
C14—R1		1.500 (4	4) 1.350) (5)	1.744	(2)	1.901	(4)	were
C15—R2		-	1.350) (5)	-		-		The
									the l
C1-N1-C1	10	106.2 (2	2) 106.1	(3)	105.5	(2)	105.3	(3)	the
C7—N2—C8	3	115.0 (2	2) 116.2	2 (3)	115.0	(2)	115.0	(3)	F
C1-N3-C8	3	122.4 (2	2) 123.8	3 (3)	123.2	(2)	123.4	(3)	1994
C1-N3-C9	<i>.</i>	106.8 (2	2) 106.1	(3)	106.7	(2)	106.8	(3)	CAN
C8 - N3 - C9	/	130.8 (2	2) 130.2	(3)	130.1	(2)	129.7	(3)	(She
NI-CI-N)	120.6 (2	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(3)	111.2	(2)	111.5 ((3)	(One
$N_{1} = C_{1} = C_{2}$	2	1186 (2	(2) = 131.2	$\frac{1}{1}$ (4)	117.0	(2)	110.4	(4)	Struc
-1	2	120.5 (2	2) 17.7	(4)	117.9	(2)	120.3	(J) (A)	SHE
$C_{2} - C_{3} - C_{4}$	í	121.3 (2	2) 120.00 = 121.00	5(4)	120.4	(2)	120.5	(4)	tion
C_{3} - C_{4} - C_{5}	5	124.1 (2) 124.7	7 (4)	124.7	(2)	124.6	(4)	
C3-C4-C8	3	119.0 (2	2) 118.2	2 (3)	118.8	(2)	118.4	(3)	т
C5-C4-C8	3	116.9 (2	2) 117.1	(3)	116.6	(2)	116.9	(4)	~ 1
C4—C5—C6	5	117.4 (2	2) 117.7	(4)	117.8	(2)	117.4	(4)	G01
C4C5C1	7	121.3 (2	2) 121.8	3 (4)	121.8	(2)	122.3	(4)	grai
C6C5C1	7	121.3 (2	2) 120.5	5 (4)	120.4	(2)	120.3	(4)	and
C5-C6-C7	7	120.1 (2	2) 119.6	5 (4)	119.8	(2)	119.9	(4)	Mol
N2—C7—C6	5	124.7 (2	2) 124.1	(4)	124.6	(2)	124.8	(4)	Ivia
N2-C7-C1	18	114.3 (2	2) 115.6	5 (3)	114.5	(2)	114.3	(4)	shir
C6-C7-C1	8	120.9 (2	2) 120.2	2 (3)	120.8	(2)	120.8	(4)	
N2-C8-N.	3	115.9 (2	2) 116.7	(3)	115.6	(2)	115.9 ((3)	
N2-C8-C4	•	125.9 (2	2) 125.2	2 (3)	126.3	(2)	125.9	(3)	Lists
N3-C8-C2	+	118.2 (2	2) 118.0	(3)	118.1	(2)	118.1	(3)	atom
NJ CIO (0	100.2 (2	(105.9)	(3)	105.8	(2)	105.3	(3)	the I
N1_C10_C	., 11	120.0 (2	5) 110.7)) 101.1	(3)	1210.7	$\binom{2}{2}$	120.4	(3) (3)	Man
C9-C10-C	 	120.9 (2	2, 121.3	(3)	121.0	(2)	120.0	(4)	Squa
C13_C14_	<i>R</i> 1	121.9 (2	(127.5)	5 (5)	110.2	(2)	120.4	(3)	-
C15-C14-	<i>R</i> 1	121.4 (2) 119 <i>6</i>	5 (5)	119.5	(2)	119.2	(3)	
C14	R2	-	117.0) (4)	-	~-/		,	D .4
C16-C15	R2	-	120.9) (5)	-		-		ĸet

Table 3. Hydrogen-bonding geometry (Å, °) for (I)-(IV)

$D - H \cdot \cdot \cdot A$	<i>D</i> —-H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = H \cdots A$
(I)				
$C2-H2\cdots N1^{i}$	1.00 (3)	2.50 (3)	3.486 (4)	175 (2)
C9-H9···F1 ⁱⁱ	0.97 (3)	2.73 (3)	3.662 (4)	163 (2)
C15—H15···F3 ⁱⁱⁱ	1.00 (3)	2.80 (3)	3.642 (3)	143 (2)
C17—H17 <i>C</i> ···F3 ^{iv}	0.95 (5)	2.78 (4)	3.649 (5)	154 (3)
(II)				
C2-H2···N1*	1.02 (6)	2.56 (6)	3.575 (6)	169 (5)
C12—H12···F1 ^{/ii}	0.93 (1)	2.69 (3)	3.36 (3)	130 (1)
C12H12···F2'"	0.93 (1)	2.76 (3)	3.458 (3)	133 (1)

C12—H12···F3 ⁱⁱ	0.93 (1)	2.77 (1)	3.637 (6)	155 (1)		
C3—H3···F3 ^{vi}	1.09 (5)	2.78 (6)	3.458 (8)	120 (3)		
C17—H17B···F3 ^{vi}	1.16 (9)	2.59 (9)	3.56 (1)	140 (5)		
C17—H17A···F5 ^{vii}	0.97 (6)	2.70 (5)	3.642 (6)	165 (4)		
C17—H17C···F4 ^{viii}	1.15 (6)	2.63 (8)	3.519 (8)	133 (4)		
(III)						
C2—H2···N1*	0.90 (3)	2.72 (4)	3.582 (3)	160 (3)		
C12—H12···F3'"	0.95 (3)	2.64 (3)	3.545 (6)	160 (2)		
C13—H13···F2' ⁱⁱ	0.92 (2)	2.63 (3)	3.311 (10)	131 (2)		
(IV)						
C2—H2···N1 ^{ix}	0.90 (5)	2.73 (6)	3.605 (6)	164 (5)		
C3-H3···F1'*	0.96 (4)	2.75 (4)	3.548 (7)	141 (4)		
C12—H12···F1 ^{xi}	0.95 (6)	2.71 (6)	3.600 (9)	156 (5)		
C13-H13···F1'' ^{xi}	0.82 (4)	2.56 (5)	3.180 (10)	134 (4)		
C12—H12···F2 ^{xi}	0.95 (6)	2.66 (6)	3.558 (12)	159 (5)		
C12—H12···F3'' ^{xi}	0.95 (6)	2.69 (5)	3.354 (11)	128 (4)		
Symmetry codes: (i) $1 - x, 2 - y, 2 - z$; (ii) $-x, 2 - y, 1 - z$;						
(iii) $-x, 2-y, 2-z$; (iv) $1+x, y, z$; (v) $1-x, -y, 1-z$; (vi) $x, y-1, z$;						
(vii) $x - 1, y, 1 + z$; (viii) $1 - x, 1 - y, 1 - z$; (ix) $2 - x, -y, -z$;						

The trifluoromethyl group was found to have rotational disorder in (II), (III) and (IV); each F atom is distributed over two sites (Fn and Fn') in (II) and (III) with final occupancies of 87.6 (5) and 12.4 (5)% in (II) and 50% each in (III) while in (IV), three sites with equal occupancy were assigned to each F atom. Some disordered F atoms have high U values. H atoms were located from difference maps and refined isotropically. The poor quality of the crystal resulting in poor data leads to the high R value for (II).

+x, y-1, z; (xi) 1-x, 2-y, -z.

For all compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XS-CANS; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990) (direct methods); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXL93, PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government & Universiti Sains Malaysia for research grants R&D Nos. 123–3417–2201 and 123–3302–2140 and Monash University. KS thanks Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1237). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Anwair, M. A. S. (1995). MSc thesis, Universiti Sains Malaysia, Malaysia.
- Chua, S. O. & Jackson, W. R. (1995). Unpublished results.
- Kaminski, J. J., Puchalski, C., Solomon, D. M., Rizvi, R. K., Conn,
 D. J., Elliott, A. J., Lovey, R. G., Guzik, H., Chiu, P. J. S., Long,
 J. F. & McPhail, A. T. (1989). J. Med. Chem. 32, 1686–1701.
- Knolker, H. J. & Boese, R. (1988). J. Chem. Soc. Chem. Commun. pp. 1151–1153.
- Knolker, H. J., Boese, R. & Hitzemann, R. (1990). Chem. Ber. 123, 327-339.
- Kondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. & Tsukamoto, G. (1990). J. Med. Chem. 33, 2012–2015.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.

- Sheldrick, G. M. (1990). SHELXTLIPC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 2236-2239

Substituted Imidazonaphthyridine Derivatives. II. C₁₉H₁₇N₃O and C₂₄H₁₉N₃O

Kandasamy Sivakumar,^{*a*}[†] Hoong-Kun Fun,^{*a*} Swee-Ong Chua,^{*b*} Mun-Foo Ooi,^{*b*} Massud Allag S. Anwair,^{*b*} Ee-Kiang Gan^{*b*} and William Roy Jackson^{*c*}

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Chemistry, Monash University, Clayton, Victoria 3168, Australia. E-mail: hkfun@usm.my

(Received 7 December 1995; accepted 14 March 1996)

Abstract

The structures of 2-(4-methoxyphenyl)-6,8-dimethylimidazo[1,2-*a*][1,8]naphthyridine, (V), and 2-(4-methoxyphenyl)-6-methyl-8-phenylimidazo[1,2-*a*][1,8]naphthyridine, (VI), are reported. Two molecules of (V) are present in the asymmetric unit and they exist as dimers connected by C—H···N hydrogen bonds. In (VI) the imidazonaphthyridine moiety and the methoxyphenyl group lie in one plane with which the 8-phenyl makes an angle of 22.35 (5)°. Molecules of (VI) also form dimeric pairs connected by C—H···N bonds around the inversion centres.

Comment

Continuing our studies of imidazonaphthyridine derivatives (Fun *et al.*, 1996), we report the structures of 2-(4-methoxyphenyl)-6,8-dimethylimidazo[1,2-*a*]-[1,8]naphthyridine, (V), and 2-(4-methoxyphenyl)-6methyl-8-phenylimidazo[1,2-*a*][1,8]naphthyridine, (VI), (see Fig. 1 and Table 2). The bond lengths and angles observed in these structures are normal and comparable with those observed in other imidazonaphthyridine derivatives (Fun *et al.*, 1996).

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

Compound (V) crystallizes with two molecules (A and B) in the asymmetric unit and they exist as dimers connected by C—H···N hydrogen bonds, which commonly stabilize the packing of imidazonaphthyridines; $C2A \cdots N1B$ 3.525 (3) Å, C2A—H2A···N1B 165 (2)° and $C2B \cdots N1A$ 3.633 (3) Å, C2B—H2B···N1A 167 (2)°. The dihedral angle between the planes of the imidazonaphthyridine and methoxyphenyl groups is 18.23 (6)° in (VA) and 14.56 (7)° in (VB). The angle between the planes of the imidazon-

Acta Crystallographica Section C ISSN 0108-2701 © 1996

[†] On leave from: Department of Physics, Anna University, Madras-600 025, India.